
COARSE-GRAINED POTENTIAL FOR INTERACTION WITH
A SPHERICAL COLLOIDAL PARTICLE AND PLANAR WALL

Milan PŘEDOTAa,b,*, Ivo NEZBEDAb1,c and Stanislav PAŘEZb2

a Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia,
370 05 České Budějovice, Czech Republic; e-mail: predota@prf.jcu.cz

b E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals,
Academy of Sciences, v.v.i., 165 02 Prague 6, Czech Republic; e-mail: 1 ivonez@icpf.cas.cz,
2 parez@icpf.cas.cz

c Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic

Received November 3, 2009
Accepted February 8, 2010

Published online May 12, 2010

Dedicated to Professor Ivo Nezbeda on the occasion of his 65th birthday.

An effective coarse-grained interaction potential between a point particle and a spherical
colloidal particle with continuously distributed inverse power-law interaction sites is de-
rived. The potential covers all ranges of spherical particle size, from a point particle up to an
infinitely large particle forming a planar surface. In the small size limit, the point-to-point
interaction is recovered, while in the limit of an infinitely large sphere the potential comes
over to the known particle–wall potentials as, e.g., the 9–3 potential in the case of the
Lennard–Jones interaction. Correctness and usefulness of the derived potential is exempli-
fied by its application to SPC/E water at a graphite sphere and wall.
Keywords: Spherical colloidal particles; Surface interaction; Effective coarse-grained poten-
tial; Molecular simulations; Water at graphite surface.

The knowledge of the structure (both spatial and orientational) of fluids at
solid and liquid surfaces is of great importance from both the technological
and scientific points of view. There are two most common cases of such
inhomogeneous fluids: (i) fluids in confinement1 and (ii) bulk fluid in equi-
librium with the surface2 or even in non-equilibrium, e.g., the condensa-
tion of vapor on droplets of aerosols particles. An example of the former
case is fluid in pores or slits, and of the latter an (infinitely) diluted solution
with the solute, e.g., a colloidal particle, playing the role of a solid object.
Of a particular interest in this case is the structure of water around large
biomolecules, i.e., non-planar surface3.
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The structure of the fluid is affected by two main factors: the inter-
molecular interactions and the geometry of the surface. The interaction of
a fluid molecule with the surface is given, in general, by its interaction with
all atoms/molecules of the surface, including atoms/molecules at the inter-
face as well as those underneath. Thus, regardless whether the surface is
formed by nanoparticles, cavities, nanotubes or a macroscopic object, when
it is modeled explicitly the resulting interaction potential of the surface
with another component of the system (e.g., ion or molecule) is given by
the sum of the direct atom–atom pair contributions. However, in some
cases as, e.g., when the solid atoms are relatively small and closely packed,
or when it is the presence of the surface itself which is more important
then the specific individual atom–atom interactions, the surface can be
treated as structureless and the sum can be replaced by an effective inter-
action which is, typically, a function of only two spatial variables (aside of
the atom–atom interaction parameters), namely the distance from the sur-
face and the curvature of the surface given by the particle radius (see, e.g.,
refs4,5 and references therein). Of particular interest to us will be the limit-
ing case of infinitely large spherical particle, which comes over to planar
surface (half-space), both mathematically and physically as demonstrated
by the observation of the change in the structure of the interfacial fluid ad-
jacent to the particle.

For surfaces and interactions, which are modeled by potentials with a
hard core, for instance, such as hard spheres and hard wall, the transition
from a spherical to a planar interface is straightforward, because the condi-
tion preventing the point particle to overlap with the spherical particle is
replaced by the corresponding condition excluding the penetration into
the planar wall. We used this approach successfully studying the behavior
of primitive water next to solutes modeled as hard spheres of different di-
ameters including the limiting case of a planar hard wall6,7 and demon-
strated the continuous transition of density profiles of water next to the
solute throughout these solutes sizes.

On a more realistic level, the non-electrostatic site–site interactions are
commonly described by a combination of power law potentials, with the
Lennard–Jones (LJ) potential being a general standard for describing both
short-range core repulsions and attractions at medium separations. How-
ever, unlike the previous case of hard-core particles, considering one LJ par-
ticle as a point solute and increasing its length-scale parameter σ does not
lead to the well-known case of the LJ fluid at the LJ 9–3 wall: (i) for finite
values of σ, the interaction potential of the fluid molecule with such a
spherical particle diverges to infinity only when the location of the particle
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and solvent atom coincides, i.e., the particle is still point-wise; (ii) increas-
ing σ leads to larger excluded volume of the particle, but concurrently to
smearing of the potential, i.e., the slope of the potential decreases and the
surface or the effective diameter of the particle (if something like that can
be defined for point particles) becomes ill-defined. An example demonstrat-
ing this behavior is Fig. 1 of our paper8, which shows smearing of the LJ
solute–solvent pair correlation function when the solute diameter is in-
creased up to ten times that of water. Carrying out the limit σ → ∞ would
lead to a particle which would repel all other components of the system to
infinity, but at the same time the transition of the attractive to repulsive
potential would be infinitely ‘soft’ and long-ranged. Consequently, such a
limiting case is far from the flat solid surface, which features steep repul-
sion when approached by the solvent molecule.

The above problem lead us in ref.8 to include the standard 9–3 interac-
tion potential of a LJ wall in comparison with large LJ solutes. However, the
results presented there make it clear that such a comparison is not ade-
quate, and the graphs manifested that the behavior at the 9–3 wall is not
the correct limiting case of a large LJ solute. The problem addressed in this
paper is thus to find a potential between a point particle and a spherical
colloidal particle such that in the case of the limit of an infinite sphere di-
ameter we get the known effective interaction between a point particle and
a flat wall.

The coarse-grained potentials between interacting bodies have been stud-
ied for a number of geometries, though often restricting to r–6 dispersion
term only. Long time ago, the potential between two spherical particles in-
teracting with r–6 potential was derived by Hamaker9, including the limiting
case of sphere interacting with a sphere of infinite diameter, i.e., planar
half-space. Sixty years later, the potential between two spherical particles
interacting with r–12 potential was derived by Henderson and co-workers10,
resulting in cumbersome analytical solution, which was further simplified by
Dobruskin11. These two results combined lead to an interaction potential
between colloidal particles based on LJ atom–atom interaction. The exten-
sion of Hamaker’s solution6 for r–6 potential to composite spheres consist-
ing of inner and outer layers of different material is available12. The
interaction potential between a point particle and an infinitely long cylin-
der (fiber), motivated by study of interaction of aerosol particles with fi-
brous filters was given13 for general power-law potential r–m leading to
expression involving beta-function and hypergeometric function. Conve-
niently, simple algebraic formulas for both London potential r–6 and the
asymptotic r–7 fully retarded vdW potential were given as well13. The inte-
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grated r–6 interaction between a spherical particle and an infinite cylinder
was later extended to the r–m interaction14, ending up for even m in an ana-
lytical solution containing complete elliptic integrals. Of closest interest for
us, as part of the derivation14, the interaction energy of a point particle
with a sphere and a cylinder for interaction potential r–m was given in terms
of hypergeometric function. The resulting simple formulas for a sphere and
m = 6 or 7, as well as for a cylinder and m = 7 were also given14. As an exam-
ple of more complex geometries, the r–6 interaction between two torus-
shaped colloidal particles was also investigated15.

THEORY

The interaction between two point particles is commonly described by a
combination of the power law potentials, with the LJ potential,
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being the standard one for describing both the core repulsions and attrac-
tions at medium separations. It is tempting to mimic the transition from
the spherical particle to a planar wall by performing the limit σ → ∞ but, as
explained above, this procedure does not lead to the case of a particle of in-
creasing diameter D (D = 2R) and atomistically filled (in our simplification,
continuously on the mesoscopic scale) with atoms of constant material-
related interaction parameters ε and σ independent of the particle size. On
the contrary, we will proceed by keeping the parameters ε and σ constant
and perform the summation of the interaction potential of a point particle
with the spherical particle implicitly by integrating the interaction poten-
tial over its volume given by diameter D, resulting in a still rather simple
mathematical expression for an effective pair potential between the spheri-
cal and point particles. As will be demonstrated, such a potential will lead,
for sufficiently steep repulsion, to divergence of the mutual interaction
when the point particle approaches the surface of the spherical particle,
and to the 9–3 interaction with a flat LJ wall in the limit D → ∞.

We need to calculate the interaction of a spherical particle of radius R
filled continuously with the matter of number density ρ interacting with a
point atom at distance r from its center. The derivation is given for the in-
teraction potential between the continuous matter and the point atom in
the form u(x) = x–n, n ≠ 2, 3, 4, which covers the most interesting cases of
the Coulombic and LJ interactions. The derivation, detailed in Appendix, is
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carried out in two steps: (i) the effective potential between a point particle
and an infinitely thin spherical shell is derived first, and then (ii) the po-
tential of the entire sphere is obtained by integration over the shells up to
the desired diameter. The resulting interaction between the sphere and the
point particle assumes thus the form
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where r is the distance between the center of the colloidal sphere and the
point particle. The number density of interacting sites within the sphere, ρ,
can be easily calculated from the mass density and molar mass of the mate-
rial constituting the sphere.

The above potential can be expressed alternatively as a function of dis-
tance z = r – D/2 between the surface of the sphere and the point atom (e.g.,
atom of the water molecule solvating the sphere)
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For the particular case of the matter interacting via the LJ potential (1), the
above formulas become
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and
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This expression can be expressed alternatively as
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While the first cumbersome term originating from the x–12 potential is an
alternative representation of the corresponding term given by Dobruskin11,
the second term originating from the x–6 potential simplifies nicely (after
trivial substitution of variables) to the form derived the same year by
Dobruskin11 and Kirsch14.

Let us discuss now several interesting limiting cases of Eqs (2) and (3).

1. Infinitely large sphere D → ∞, which becomes a semi-infinite wall.

In this case, it is convenient to express the potential as the function of the
distance z from the surface, Eq. (3). For D → ∞, only the last term is
non-zero for n > 4, i.e.,
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For the LJ potential, the resulting potential
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becomes the well-known LJ 9–3 point–wall interaction potential. The de-
pendence of the interaction with a spherical LJ particle of diameter D as a
function of the distance from the surface is plotted in Fig. 1. The potential
diverges at contact distance z = 0. For large diameters, the curves approach
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the interaction with a flat LJ wall (Eq. (8)). For small particles, the magni-
tude of the interaction decreases as D3 due to the limited mass of the sphere.

2. Limiting case of a small sphere.

In this case, a more appropriate option is to express the potential as a func-
tion of the distance r from the center of sphere (Eq. (2)); particularly in a
situation when the comparison with the point LJ particle is of interest. In
this way, one can easily answer the question what is the effect of the finite
diameter of the sphere as opposed to a point LJ particle. The limit D << r
leads, within the first non-zero term in D, to the expression U r d r( , )<< =
πρ ρD r V rn n3 6/ /= , i.e., the interaction with the sphere reduces to the
interaction with a point particle located in the center of the sphere and
proportional to the total mass (number density times volume) of the
sphere. In Fig. 2, the interaction potentials with a finite-size sphere of di-
ameter D (full symbols) are compared with the point particle of the same
‘mass’ (open symbols), i.e., the product Vρ is the same in both cases and
the potential for the point LJ particle is calculated as

U r D
D

U r V U rLJ
point

LJ LJ( , ) ( ) ( )= =πρ ρ
3

6
. (9)
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FIG. 1
Dependence of the interaction with a spherical LJ particle of diameter D and a planar LJ wall
as a function of the distance from the surface z



At distances r >> D, both potentials become indistinguishable, i.e., the fi-
nite size of the sphere is not important and the interaction potential can be
approximated by the point LJ potential. At distances comparable to the di-
ameter of the sphere, the behavior of both types of curves is significantly
different. The potential ULJ(r,D) given by Eq. (4) diverges to infinity at the
contact distance D/2, while the point LJ potential (9) diverges at 0. As a re-
sult, the potential of a finite sphere is steeper in the repulsive region. At the
same time, at larger distances, the potential of the sphere is more attractive
compared to the LJ potential, due to the interaction with the closest part of
the sphere, i.e., the interaction with its atoms, which are closer than the
center, i.e., assumed location of the point LJ particle. This behavior is
caused by the short-range nature of the LJ interaction.

3. As an exercise, one can verify that for n = 0, Eq. (2) yields a trivial result

U r D
D

V( , ) = =πρ ρ
3

6
(10)

and for n = 1, it yields U r D D r V r( , ) / /= =πρ ρ3 6 , i.e., the interaction with the
sphere (outside of the sphere) depends only on its total mass and not on
the radius, which is well-known for electrostatic and gravitational radial
fields.
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Comparison of the interaction potential of finite sphere (Eq. (4), full symbols) with interaction
potential of point LJ particle of the same ‘mass’ (Eq. (9), open symbols)



SIMULATION RESULTS

As a representative system to demonstrate the dependence of structural
properties on the size of the spherical solute, we have chosen SPC/E water16

in contact with a carbon (graphite) sphere of mass density 2.25 g cm–3,
which corresponds to number density ρ = 112.9125 nm–3. The interaction
parameters of carbon, σC = 0.34 nm and εC/kB = 28 K, were taken from ref.4.
The Lorentz–Berthelot combining rules were applied for the carbon–
oxygen parameters, which are used in the calculation of the van der Waals
interactions between the sphere and water. The resulting potential, as well
as its first derivative, were tabulated and used as input for simulations in
GROMACS17. Particle-mesh Ewald summation was used to treat the long-
range electrostatic interactions, Berendsen thermostat and barostat were
applied to keep average temperature 300 K and pressure 1 bar, respectively.
The interaction cutoff was larger then D/2 + 1.2 nm to allow interaction
between the sphere and water molecules up to distance 1.2 nm from the
sphere surface. Since setting independent cutoffs for sphere–water and
water–water interactions was not achieved in GROMACS, the same cutoff
was applied in both cases, though leading to unneccessary increase of CPU
time. In all cases, there was only one spherical solute in the simulation box,
solvated by water molecules. The overview of the simulation parameters is
given in Table I. The simulation time can be lower for larger spheres, as
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TABLE I
Parameters of simulations

D, σ D, nm rcut, nm L, nm N msphere, mu tsim, ns tconf, ps

0.5 0.1583 1.30 3.00 894 18 100 1

1 0.3166 1.40 3.49 1410 18 73 1

2 0.6332 1.55 3.50 1410 144 56 1

5 1.583 2.05 4.55 3009 2250 12.5 0.5

10 3.166 2.80 5.83 5832 18000 6 0.5

planar
wall

– 0.9 3.166 (xy)
2.963 (z)

864 – 1 –

Diameter of the sphere D given as multiple of the LJ σ parameter of the SPC/E potential and
in absolute terms, interaction cutoff radius rcut, average box length L, number of water mol-
ecules N, mass of sphere msphere, simulation time tsim, and interval between saving of config-
urations for post-processing tconf



their larger surface implies more molecules in their vicinity and therefore
better statistics compared to small spheres. The mass of the sphere, a pa-
rameter without a direct effect on the results, is proportional to the volume
of the sphere; only in the case of the smallest sphere the mass was kept at
the value 18 mu to prevent potentially too vivid motion of the sphere. Ra-
dial distribution functions and angular distributions of water molecules
were obtained by the analysis of saved configurations at tconf intervals. Our
previous Monte Carlo results8 for the case of planar 9–3 wall were used. The
latter results were obtained by our own code with every configuration ana-
lyzed during the simulation run.

The radial distribution functions between the center of the sphere and
the oxygen atom of the water molecule for differently sized spheres (Fig. 3,
top) shows the obvious effect of the sphere size. However, unlike our previ-
ous work8, in which the size of the sphere was modeled by enlarging the LJ
σ parameter, in the current case the interface between the sphere and sol-
vent is well defined (as space occupied/unoccupied by the continuously dis-
tributed atoms forming the sphere) and the shape of the curves is very
similar for all solute sizes. This is even better demonstrated by the bottom
plot of Fig. 3, where the curves are plotted as a function of distance from
the surface of the sphere; in this case the density profile at the planar wall
is included as well. The continuous trend of the curves with the enlarging
solute diameter towards the density profile at the planar wall is evident.
Smaller sphere allows closer approach of water towards its surface as, due to
larger curvature of the surface, fewer atoms participates in the repulsion
compared to the planar wall. Figure 3 also indicates the split of the first sol-
vation shell into two subshells Ia and Ib, for which the angular distribution
of water molecules was analyzed in detail. Due to the similarity of all
curves, common dividing points 0.286 nm (first peak) and 0.482 nm (first
minimum after the first peak) were used for all solute sizes, though a slight
continuous shift of the minimum towards larger distances with the increas-
ing solute size is present. Interesting phenomenon is the height of the first
peak which is not monotonous, but exhibits maximum in the 2–5σ solute
range, which must be linked with the most convenient packing and/or hy-
drogen bonding structure of water molecules at these surfaces.

The angular distribution of water molecules in the vicinity of the solute
can be unambiguously described by angular bivariate plots8,18, which
uniquely describe the orientation of the water molecule relative to the nor-
mal of the surface (center of sphere–oxygen vector) in terms of cos θ, where
θ is the vector between the surface normal and dipole vector of the mole-
cule, and angle φ, formed by the projection of the surface normal to the
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plane perpendicular to the molecule dipole moment. For details and sche-
matic figures, see the original paper18. The bivariate plots for differently
sized spheres and the planar wall (Fig. 4) shows first of all that orientation
changes are evident in the Ia subshell, while the structure of subshell Ib
does not change significantly. With the help of numbering selected orienta-
tions of water molecules relative to the solute (Fig. 5) and their location on
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FIG. 3
Sphere–oxygen radial distribution functions for differently sized spheres as a function of dis-
tance from the center (top) and surface (bottom) of the sphere. The density profile at planar
wall is included in the latter case

rSO, nm

z = rSO – D/2, nm

gSO

gSO



bivariate plots (Fig. 4), the effect of the increasing solute size can be identi-
fied as decreasing population of the orientation I with two hydrogens and
one lone-pair site straddling the sphere, and orientation II with one hydro-
gen site and two lone-pair sites straddling the sphere. At the same time,
orientation III with the molecular plane of water parallel to the surface
becomes predominantly populated. The transition from the largest sphere
studied, D = 10σ, towards the planar wall leads to even further reorienta-
tion of water molecules, with configurations V and VI, both pointing with
the hydrogen site or the lone-pair site toward the surface and sacrificing the
hydrogen bond of this site, clearly distinguishable, though secondary to
population of configuration III. Overall we see a significant reorientation in
the Ia subshell, while only small changes are seen in the Ib subshell.

In Fig. 6, we present the monovariate distribution of cos θ, defined iden-
tically as in the case of bivariate plot, i.e., the monovariate plot represents
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FIG. 4
Bivariate plots of angular distribution of water molecules around differently sized spheres and
planar wall



projection of the bivariate plot when the vertical φ axis is collapsed. While
the increase, with the increasing solute size, of the population of orienta-
tions with the dipole moment parallel to the surface is captured by the
monovariate plot, other phenomena, particularly shift from orientations I
to VI and II towards V or difference between orientations III and IV can
not be addresses by this type of plot, as these pairs of different orientations
result in identical dipole orientations. We have addressed this deficiency of
the monovariate plots, particularly of the dipole orientation, earlier8, but it
is probably worth stressing this again. The monovariate distribution of an-
gle α, defined as angle between the oxygen–sphere vector and OH vector of
the molecule, is much more informative in terms of indicating the trends
discussed on bivariate plots. Particularly, the shift of the populations of ori-
entations I and II towards III, or even V and VI, when the solute is en-
larged, is well captured.
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FIG. 5
Illustration of the identified orientations I–VI of the water molecules relative to the solute.
The white and dark grey sticks indicate the O–H bonds and the lone pair directions, respec-
tively. The reference vector pointing from the water oxygen to the solute is also shown. The
curved arrows show the rotation that transforms the given orientation to the indicated one



CONCLUSIONS

We have derived, in a simple analytical form, the coarse-grained potential
for the interaction between a finite size spherical colloidal particle, formed
by homogeneously distributed sites interacting with r–n potential, and a
point particle. We have demonstrated the correct limiting behavior for
large spheres, which approaches the behavior of a planar surface. For suffi-
ciently steep potentials, with repulsion steeper than r–4, the resulting inter-
action preserves the rigidity of the particle, i.e., the interaction diverges
when the point particle approaches the surface of the spherical particle.
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FIG. 6
Monovariate plots of angular distribution of water molecules around differently sized spheres
and planar wall



The resulting integrated potential might be used successfully in situations
when the diameter of the sphere becomes large compared to the inter-
atomic distances of atoms forming the sphere and in the absence of specific
interactions with the surface (such as, e.g., special surface groups, charged
atoms, etc.), i.e., in situation when the steric van der Waals interaction is
dominant. The advantages of the derived potential are twofold: (i) when
appropriate, it allows avoiding the all-atom modeling of the sphere by re-
placing the interaction with a coarse-grained potential and making thus
simulations more efficient; (ii) it enables a systematic study of the effect of
the particle size and its curvature on the properties of the interface at its
surface. Representative results demonstrating suitability of the approach
were presented for the model case of carbon sphere and planar surface in
contact with SPC/E water.

We demonstrate a transition between the potentials for colloidal bodies
of various geometries discussed in the introduction and the extensively
explored 9–3 LJ potential for effective interaction with semi-infinite planar
wall and further modifications of Steele’s potential4,19. Our results capture
the smooth change of the interfacial structure of water in contact with
spherical particle of increasing size including the limiting case of planar
surface, as documented by the density distribution functions and the orien-
tation distributions, described unambiguously by the bivariate plots, which
are superior to the less instructive monovariate plots.

There is another class of coarse-grained potentials closely related to the
one investigated here, namely the coarse-grained interaction potential of a
point atom with fullerene C60–C96 buckyballs20,21, i.e., cage-like structures
with all carbon atoms on the surface of a sphere. The coarse-grained poten-
tial in this case arises from assumption of homogeneous distribution of
carbon atoms on the surface of the buckyball, which is well justified due to
the large number of these atoms. In fact the first step of the derivation of
our coarse-grained interaction potential between a point and filled sphere,
which is interaction between a point and a spherical surface, is a generic
case of Eq. (1) of ref.20, with the latter being a special case of LJ interaction.
The coarse-grained interaction between two carbon buckyballs, known as
Girifalco potential22, has been derived even earlier by integrating interac-
tion between two spherical surfaces. The coarse-grained interaction poten-
tial with cylindrical wall was derived recently23.

As a tribute to the seminal work of Hamaker9, we conclude this paper by
reporting his result for the interaction potential between two spherical col-
loidal particles of diameters D1 = 2R1 and D2 = 2R2 and center-to-center sep-
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aration r, i.e., surface-to-surface distance z = r – R1 – R2, with atom–atom
interaction –A/x6,

U r R R
A

( , , )1 2

2 2
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= − ×π ρ

×
− +

+
− −

+
− +2 21 2

2
1 2

2
1 2

2
1 2

2

2
1 2

2

2

R R

r R R
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r R R

r( ) ( )
ln
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− −
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
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or alternatively,
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APPENDIX

Derivation of the interaction potential between a point particle and spheri-
cal particle with a center at distance r and radius R continuously filled with
a matter with number density ρ, interacting with potential u(x) = x–n.

The derivation proceeds in two steps: 1. interaction US(r,R′) with a surface
of a sphere with radius R′ is derived, then 2. integration of the previous
result for R′ between 0 and R yields the resulting interaction U(r,R) with
a filled sphere, U r R U r R RS

R
( , ) ( , )= ′ ′∫0 d .

1. Interaction with the spherical surface of surface number density of in-
teraction sites κ = ρ dR′ is integrated over spherical rings as shown in Fig. 7,
i.e.,

U r R
U r R

R
u x s S R u x sS s R

R
( , )

( , )
( ( )) ( ( )′ =

′
= ′

=− ′

′

∫
d

d
d = 2ρ π ρ )ds

s R

R

=− ′

′

∫ .

The relation between the interaction distance x and s is as follows

x r s R s r rs R x x r s2 2 2 2 2 22 2 2= − + ′ − = − + ′ ⇒ = −( ) d d .
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FIG. 7
Schematics of the variables defined to derive the interaction between point-wise particle lo-
cated at P and a surface of a sphere of radius R′ centered at C at a distance r



This allows carrying out the integration over x,

U r R R u x s s R
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U r R
R
r

r R
nS
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( , , )
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−

−

α π ρ α2 2

2
.

Note that application of this generic formula for LJ potential leads to the
frequently used interaction potential between a point and a homoge-
neously distributed LJ atoms along a surface of a sphere, Eq. (1) of ref.20,
used for the coarse-grained description of carbon buckyballs.

2. Similarly as the surface interaction was split into two contributions
differing only by the sign, the interaction with the sphere will be split into
corresponding two terms

U r R U r R R U r R U r RS

R
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Carrying out substitution r + αR′ = y (and considering α2 = 1) yields
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Finally, in the difference U(r,R) = U(r,R,+1) – U(r,R,–1), the terms independ-
ent of α cancel out, leading to
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